33 research outputs found

    Oceanic Games: Centralization Risks and Incentives in Blockchain Mining

    Full text link
    To participate in the distributed consensus of permissionless blockchains, prospective nodes -- or miners -- provide proof of designated, costly resources. However, in contrast to the intended decentralization, current data on blockchain mining unveils increased concentration of these resources in a few major entities, typically mining pools. To study strategic considerations in this setting, we employ the concept of Oceanic Games, Milnor and Shapley (1978). Oceanic Games have been used to analyze decision making in corporate settings with small numbers of dominant players (shareholders) and large numbers of individually insignificant players, the ocean. Unlike standard equilibrium models, they focus on measuring the value (or power) per entity and per unit of resource} in a given distribution of resources. These values are viewed as strategic components in coalition formations, mergers and resource acquisitions. Considering such issues relevant to blockchain governance and long-term sustainability, we adapt oceanic games to blockchain mining and illustrate the defined concepts via examples. The application of existing results reveals incentives for individual miners to merge in order to increase the value of their resources. This offers an alternative perspective to the observed centralization and concentration of mining power. Beyond numerical simulations, we use the model to identify issues relevant to the design of future cryptocurrencies and formulate prospective research questions.Comment: [Best Paper Award] at the International Conference on Mathematical Research for Blockchain Economy (MARBLE 2019

    Monopoly Pricing in a Vertical Market with Demand Uncertainty

    Get PDF
    We study a vertical market with an upsteam supplier and multiple downstream retailers. Demand uncertainty falls to the supplier who acts first and sets a uniform wholesale price before the retailers observe the realized demand and engage in retail competition. Our focus is on the supplier's optimal pricing decision. We express the price elasticity of expected demand in terms of the mean residual demand (MRD) function of the demand distribution. This allows for a closed form characterization of the points of unitary elasticity that maximize the supplier's profits and the derivation of a mild unimodality condition for the supplier's objective function that generalizes the widely used increasing generalized failure rate (IGFR) condition. A direct implication is that optimal prices between different markets can be ordered if the markets can be stochastically ordered according to their MRD functions or equivalently to their elasticities. Based on this, we apply the theory of stochastic orders to study the response of the supplier's optimal price to various features of the demand distribution. Our findings challenge previously established economic insights about the effects of market size, demand transformations and demand variability on wholesale prices and indicate that the conclusions largely depend on the exact notion that will be employed. We then turn to measure market performance and derive a distribution free and tight bound on the probability of no trade between the supplier and the retailers. If trade takes place, our findings indicate that ovarall performance depends on the interplay between demand uncertainty and level of retail competition

    On the Mean Residual Life of Cantor-Type Distributions: Properties and Economic Applications

    Get PDF
    In this paper, we consider the mean residual life (MRL) function of the Cantor distribution and study its properties. We show that the MRL function is continuous at all points, locally decreasing at all points outside the Cantor set and has a unique fixed point which we explicitly determine. These properties readily extend to the parametric family of p-singular, Cantor type distributions introduced by Mandelbrot (1983). The findings offer evidence that, contrary to common perceptions, Cantor-type distributions are tractable enough to be considered for practical applications. We provide such an example from the field of economics in which Cantor-type distributions can be used to model markets with recurrent bandwagon effects and show that earlier anticipated bandwagon effects lead to higher monopolistic prices. We conclude with a simple implementation of the algorithm by Chalice (1991) to plot Cantor-type distributions

    Exploration-Exploitation in Multi-Agent Learning: Catastrophe Theory Meets Game Theory

    Get PDF
    Exploration-exploitation is a powerful and practical tool in multi-agent learning (MAL), however, its effects are far from understood. To make progress in this direction, we study a smooth analogue of Q-learning. We start by showing that our learning model has strong theoretical justification as an optimal model for studying exploration-exploitation. Specifically, we prove that smooth Q-learning has bounded regret in arbitrary games for a cost model that explicitly captures the balance between game and exploration costs and that it always converges to the set of quantal-response equilibria (QRE), the standard solution concept for games under bounded rationality, in weighted potential games with heterogeneous learning agents. In our main task, we then turn to measure the effect of exploration in collective system performance. We characterize the geometry of the QRE surface in low-dimensional MAL systems and link our findings with catastrophe (bifurcation) theory. In particular, as the exploration hyperparameter evolves over-time, the system undergoes phase transitions where the number and stability of equilibria can change radically given an infinitesimal change to the exploration parameter. Based on this, we provide a formal theoretical treatment of how tuning the exploration parameter can provably lead to equilibrium selection with both positive as well as negative (and potentially unbounded) effects to system performance.Comment: Appears in the 35th AAAI Conference on Artificial Intelligenc
    corecore